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SUMMARY

In the following paper, we present a consistent Newton–Schur (NS) solution approach for variational
multiscale formulations of the time-dependent Navier–Stokes equations in three dimensions. The main
contributions of this work are a systematic study of the variational multiscale method for three-dimensional
problems and an implementation of a consistent formulation suitable for large problems with high
nonlinearity, unstructured meshes, and non-symmetric matrices. In addition to the quadratic convergence
characteristics of a Newton–Raphson-based scheme, the NS approach increases computational efficiency
and parallel scalability by implementing the tangent stiffness matrix in Schur complement form. As a
result, more computations are performed at the element level. Using a variational multiscale framework,
we construct a two-level approach to stabilizing the incompressible Navier–Stokes equations based on a
coarse and fine-scale subproblem. We then derive the Schur complement form of the consistent tangent
matrix. We demonstrate the performance of the method for a number of three-dimensional problems for
Reynolds number up to 1000 including steady and time-dependent flows. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The incompressible Navier–Stokes equations are used to model a number of important physical
phenomena, including pipe flow, flow around airfoils, ocean currents, weather, and blood flow
in an artery, among others. Significant emphasis has been placed in the literature on developing
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stabilized formulations robust enough to model complex flows at high Reynolds number [1–3].
The variational multiscale method, due to Hughes [4], has been gaining popularity as a robust
stabilization technique. This method consists of decomposing the problem into a coarse (or resolv-
able) and fine-scale (unresolvable) subproblem. The inclusion of the fine-scale influence stabilizes
the solution.

The variational multiscale method has been well studied for two-dimensional problems, but less
so for three-dimensional problems. Also, three-dimensional effects become more influential as
the Reynolds number increases. It is well known that two-dimensional analysis cannot accurately
capture flow features for high Reynolds flows. For example, for the backward facing step problem
at Reynolds number greater than 450, the reattachment length obtained by two-dimensional anal-
ysis does not match experimental results [5]. One of the main contributions of this paper is a
systematic study of the variational multiscale method for three-dimensional problems. Solving
three-dimensional problems requires many more degrees of freedom (DOF). Using a mixed formu-
lation, in which velocity and pressure are treated as unknowns, the number of DOF easily exceeds
several million. Another contribution of this work is the Schur complement implementation that
greatly reduces the problem size and improves parallel performance.

The main challenge to numerically modeling the incompressible Navier–Stokes equations using
the finite element method is due to the well-known instability associated with using equal order
interpolation for the velocity and pressure (which is computationally most convenient). Many
stabilized methods for the incompressible Navier–Stokes equations have been developed that allow
for equal order interpolation including [4, 6–10]. Stabilized formulations that employ a variational
multiscale framework have been gaining popularity. First introduced as a pathway to developing
stabilized formulations from first principles, the variational multiscale concept has been used in a
number of contexts, particularly for the incompressible Navier–Stokes equations [7, 11–17].

One can either solve the fine-scale problem in terms of the coarse-scale variables, thereby gener-
ating a stabilization term, and substitute back into the coarse-scale problem, or solve both problems
simultaneously. Typically a fixed-point iteration technique is used to linearize the weak form of
the governing equations. We have shown in [12] that by using a consistent Newton–Raphson
(NR)-based linearization, quadratic convergence may be achieved and that convergence may be
achieved for problems for which fixed-point iterative methods diverge or converge very slowly. In
this work, we present a Schur complement implementation of the consistent NR-based lineariza-
tion of incompressible Navier–Stokes equations that provides good computational efficiency and
scalability. We extend the work presented in [12] to large, nonlinear, three-dimensional problems
on unstructured meshes.

Using the Schur complement implementation for consistent formulations has been used primarily
in the field of domain decomposition techniques and computational plasticity [18, 19]. The Schur
complement implementation requires using block Gauss elimination to remove the fine-scale terms
from the consistent tangent matrix. The resulting tangent matrix contains modified coarse-scale
terms that take into account the fine-scale influence. If needed, the fine-scale terms can be obtained
via post-processing. The Schur complement form of the consistent tangent matrix reduces the
problem size, and provides for much greater parallel scalability.

Primary emphasis in this paper is placed on solving several canonical three-dimensional problems
for which experimental and numerical results are available in the literature. We show that using
the Newton–Schur (NS) approach not only improves convergence, but also allows for much more
efficient use of parallel resources. In the first section, we introduce the variational multiscale
framework and describe the decomposition of the problem into a coarse- and fine-scale subproblem.
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In the next section, we present the consistent linearization of the Navier–Stokes equations and
incorporate the Schur complement form of the consistent tangent matrix to complete the Newton–
Schur solution approach. We then present a number of numerical examples that illustrate the
advantages of the consistent NS solution approach.

2. GOVERNING EQUATIONS

Let � be a bounded open domain and � be its boundary, which is assumed to be piecewise
smooth. Let the velocity vector field be denoted by v :�→Rnd, where ‘nd’ is the number of
spatial dimensions. Let the (kinematic) pressure field be denoted by p :�→R. As usual, � is
divided into two parts, denoted by �v and �t, such that �v∩�t=∅ and �v∪�t=�. �v, and �t are
the Dirichlet and Neumann boundaries, respectively. The governing equations for incompressible
Navier–Stokes flow can be written as

v ·∇v−2�∇2v+∇ p=b in � (1)

∇ ·v=0 in � (2)

v=vp on �v (3)

−pn+�(n·∇)v= tn on �t (4)

where v is the velocity, p is the kinematic pressure (pressure divided by density), ∇ is the gradient
operator, ∇2 is the Laplacian operator, b is the body force, �>0 is the kinematic viscosity, vp is
the prescribed velocity vector field, tn is the prescribed traction, and n is the unit outward normal
vector to �. Equation (1) represents the balance of linear momentum and Equation (2) represents
the continuity equation for an incompressible continuum. Equations (3) and (4) are the Dirichlet
and Neumann boundary conditions, respectively.

3. VARIATIONAL MULTISCALE FRAMEWORK

It is well known that the classical mixed formulation for the incompressible Navier–Stokes equa-
tions does not produce stable numerical results. The instability of the standard Galerkin formulation
may be mathematically explained by the Ladyzhenskaya-Babuska-Brezzi (LBB) inf-sup stability
condition [1, 20]. To get stable numerical results, one must stabilize the standard Galerkin formu-
lation. The variational multiscale concept, which stems from the pioneering work by Hughes [4],
decomposes the underlying fields into coarse or resolvable scales and subgrid or unresolvable
scales.

3.1. Multiscale decomposition

Let us divide the domain � into N non-overlapping subdomains �e (which in the finite element
context will be elements) such that

�=
N⋃

e=1
�e (5)
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The boundary of the element �e is denoted by �e. We decompose the velocity field v(x) into
coarse-scale and fine-scale components, indicated as v̄(x) and v′(x), respectively.

v(x)= v̄(x)+v′(x) (6)

Likewise, we decompose the weighting function w(x) into coarse-scale w̄(x) and fine-scale w′(x)
components.

w(x)= w̄(x)+w′(x) (7)

We further make an assumption that the fine-scale components vanish along each element boundary.

v′(x)=w′(x)=0 on �e, e=1, . . . ,N (8)

Let V be the function space for the coarse-scale component of the velocity v̄ and W be the
function space for w̄ that are defined as

V :={v|v∈(H1(�))nd,v=vp on �v} (9)

W :={w|w∈(H1(�))nd,w=0 on �v} (10)

Let V′ be the function space for both the fine-scale component of the velocity v′ and its corre-
sponding weighting function w′, and is defined as

V′ :={v|v∈(H1(�e))nd,v=0 on �e,e=1, . . . ,N } (11)

In theory, we could decompose the pressure field into coarse-scale and fine-scale components.
However, for simplicity we assume that there are no fine-scale terms for the pressure p(x) and for
its corresponding weighting function q(x). Hence, the function space for the fields p(x) and q(x)
is P

P :={p|p∈L2(�)} (12)

where L2(�) is the space of square-integrable functions on the domain �. For further details on
function spaces refer to Brezzi and Fortin [20].
3.2. Two-level classical mixed formulation

After substitution of Equations (6) and (7) into the classical mixed formulation and decomposing
the problem into a coarse- and fine-scale subproblem, the resulting weak form can be written as
two parts. The coarse-scale problem can be written as

(w̄, (v̄+v′) ·∇(v̄+v′))+(∇w̄,2�∇(v̄+v′))−(∇ ·w̄, p)=(w̄,b)+(w̄,h)�t ∀w̄∈W̄ (13)

(q,∇ ·(v̄+v′))=0 ∀q∈P (14)

The fine-scale problem can be written as

(w′, (v̄+v′) ·∇(v̄+v′))+(∇w′,2�∇(v̄+v′))−(∇ ·w′, p)=(w′,b)+(w′,h)�t ∀w′ ∈W′ (15)

For convenience, we define the L2 inner-product over a spatial domain, K , as

(a,b)K =
∫
K
a ·bdK (16)
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The subscript K will be dropped if K is the whole of �, that is K =�. Notice that the weak form is
nothing more than the classical mixed formulation written for the coarse- and fine-scale variables,
with the exception that there is no weak form of the fine-scale incompressibility constraint. For a
more detailed derivation of the weak form, see [12].

3.3. Fine-scale interpolation and bubble functions

If one chooses a single bubble function for interpolating the fine-scale variables (similar to the
MINI element [21]), then we have

v′ =beb, w′ =bec (17)

where be is a bubble function, and b and c are constant vectors. The gradients of the fine-scale
velocity and weighting functions are

∇v′ =b∇beT, ∇w′ =c∇beT (18)

where ∇be is a dim×1 vector of the derivatives of the bubble function.

4. CONSISTENT NS SOLUTION STRATEGY

For the consistent NS method, we treat Equations (13)–(15) as global residuals and obtain the
solution using an iterative update equation.

4.1. Vector residual

First, we express the solution field and its weighting function in terms of nodal values v̄= ˆ̄vTNT

and w̄= ˆ̄wT
NT, respectively (where N is a row vector of shape functions for each node). After

substituting these expressions into the global residuals, the vector residuals, R, that are the sum
contributions of the vector residuals at the element level, Re, can be written as

Re
c(v̄;v′, p) :=

∫
�
(NT�I)((v̄+v′) ·∇)(v̄+v′)d�+2�

∫
�
((DN)J−1�I)vec[∇v̄+∇v′]d�

−
∫

�
vec[J−T(DN)T]pd�−

∫
�
(NT�I)bd�−

∫
�t

(NT�I)hd� (19)

Re
p(v̄;v′) :=−

∫
�
NT∇ ·(v̄+v′)d� (20)

Re
f (v̄;v′, p) :=

∫
�e

beI((v̄+v′) ·∇)(v̄+v′)d�+2�
∫

�e

(∇beT�I)vec[∇v̄+∇v′]d�

−
∫

�e

(∇beT�I)vec[I]pd�−
∫

�e

beIbd� (21)
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where the subscripts ‘c’, ‘p’, and ‘f’ stand for coarse, pressure, and fine, and DN represents a
matrix of the first derivatives of the element shape functions, which is defined for a triangular
element as

DN :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�N1

��1

�N1

��2
...

...

�N3

��1

�N3

��2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(22)

J is the element Jacobian matrix, vec[·] is an operation that represents a matrix with a vector, and
� is the Kronecker product [22].
Remark 1
For transient problems, we simply add the time derivative of the velocity to Equation (1). Using the
backward Euler method to integrate in time from step n to step n+1, we add the following terms,∫
�(1/�t)(NT�I)v̄n+1 d�−∫

�(1/�t)(NT�I)v̄n d� and
∫
�e

(be/�t)Iv̄n+1 d�−∫
�e

(be/�t)Iv̄n d�
to Equations (19) and (21), respectively, where v̄n is the converged velocity from the previous
time step. For further details, see [12].
4.2. Tangent matrix

Using a NR-type approach, we obtain the solution in an iterative fashion using the following
update equation until the residual is under a prescribed tolerance:

v̄i+1= v̄i +�v̄i , pi+1= pi +�pi , v′i+1=v′i +�v′i (23)

where the updates at each iteration, i , are calculated from the following system of equations:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

DRc

Dv̄
DRc

Dp

DRc

Dv′
DRp

Dv̄
DRp

Dp

DRp

Dv′
DRf

Dv̄
DRf

Dp

DRf

Dv′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

�v̄

�p

�v′

⎫⎪⎪⎬
⎪⎪⎭=−

⎧⎪⎨
⎪⎩
Rc

Rp

Rf

⎫⎪⎬
⎪⎭ (24)

The element matrices, DRe/D(·), which are assembled to form the consistent tangent matrix, are
presented in [12].

5. SCHUR COMPLEMENT IMPLEMENTATION

By applying block Gauss elimination to Equation (24), we obtain the Schur complement repre-
sentation of the update equation,[

Kv̄v̄ Kv̄p

Kpv̄ Kpp

]{
�v̄

�p

}
=−

{
R1

R2

}
(25)
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where each of the stiffness terms, K, represents the assembled element contributions as follows:

Kv̄v̄ = Nele
A
e=1

[
DRe

c

Dv̄
−DRe

c

Dv′

[
DRe

f

Dv′

]−1 DRe
f

Dv̄

]

Kv̄p = Nele
A
e=1

[
DRe

c

Dp
−DRe

c

Dv′

[
DRe

f

Dv′

]−1 DRe
f

Dp

]

Kpv̄ = Nele
A
e=1

[
DRe

p

Dv̄
−DRe

p

Dv′

[
DRe

f

Dv′

]−1 DRe
f

Dv̄

]

Kpp = Nele
A
e=1

[
−DRe

p

Dv′

[
DRe

f

Dv′

]−1 DRe
f

Dp

]
(26)

In addition the residuals are given as

R1 = Nele
A
e=1

[
Re
c−

DRe
c

Dv′

[
DRe

f

Dv′

]−1

Re
f

]

R2 = Nele
A
e=1

[
Re
p−DRe

p

Dv′

[
DRe

f

Dv′

]−1

Re
f

] (27)

From Equation (25) we update the coarse-scale velocity and pressure. We then solve for the
fine-scale increment from

�v′ =
[
DRf

Dv′

]−1[
−Rf−DRf

Dv̄
�v̄−DRf

Dp
�p

]
(28)

Again, the coarse- and fine-scale velocity and pressure are updated until convergence. In addition to
faster convergence properties obtained for the NR-type solution procedure, the Schur complement
representation increases parallel performance by taking advantage of the fine-scale terms vanishing
on the boundary of the element. The fine-scale computations can therefore take place at the element
level without the need for inter-processor communication.

6. NUMERICAL RESULTS

The above formulation was implemented in C++ on the Turing cluster, which consists of 768
Apple Xservers, each with two 2GHz G5 processors and 4GB of RAM, for a total of 1536
processors [23]. The cluster is connected using a high-bandwidth, low-latency Myrinet network
from Myricom. The operating system used is Mac OS X Server, version 10.3. The data structures
were implemented in parallel using the portable, extensible toolkit for scientific computation
(PETSc) [24] Vec and Mat objects (note that the Vec object is different than the vec[·] operator).
PETSc, in turn, uses MPICH for parallel communication. Linear solutions for each iteration were
obtained using the direct solver provided by PETSc. The tolerance was set to 1E-12 and the
maximum number of iterations was set to 50. The code aborts if the max number of iterations is
reached without meeting the tolerance.
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Between 1 and 128 processors were used for each simulation and the results were visualized
using Tecplot 360 [25] and VisIt 1.8.1 [26]. The mesh was partitioned using a simple block
partitioning strategy. The parallel results may be improved with the use of a more sophisticated
partitioning algorithm, but that is beyond the scope of this work. In order to avoid deadlock, matrix
assembly routines are called by each process after all of its elements have been computed.

6.1. Body force-driven cavity

Using the body force-driven cavity problem, we compare the speedup on a single processor
between a consistent formulation using the Schur complement implementation and one without.
The geometry and boundary conditions for the body force-driven cavity problem, shown in Figure 1,
consists of a unit domain with boundaries that prohibit flow in the tangential and normal directions
(vx =vy =0.0). The prescribed constant body force, b, in components, is given as

bx = (12−24y)x4+(−24+48y)x3+(−48y+72y2−48y3+12)x2

+(−2+24y−72y2+48y3)x+1−4y+12y2−8y3

+(4xy−12xy2+8xy3−12x2y+36x2y2−24x2y3+8x3y−24x3y2+16x3y3)

×(x2(1−x)2(2y−6y2+4y3))+(2x2−12x2y+12x2y2

−4x3+24x3y−24x3y2+2x4−12x4y+12x4y2)

×(−y2(1− y)2(2x−6x2+4x3)) (29)

by = (8−48y+48y2)x3+(−12+72y−72y2)x2

+(4−24y+48y2−48y3+24y4)x−12y2+24y3−12y4

+(−2y2+12y2x−12y2x2+4y3−24y3x+24y3x2−2y4+12y4x−12y4x2)

×(x2(1−x)2(2y−6y2+4y3))+(−4yx+12yx2−8yx3

+12y2x−36y2x2+24y2x3−8y3x+24y3x2−16y3x3)

×(−y2(1− y)2(2x−6x2+4x3)) (30)

For a unit viscosity, the exact solution is

vx = x2(1−x)2(2y−6y2+4y3)

vy = −y2(1− y)2(2x−6x2+4x3)

p = x(1−x)

(31)

The results for both the NR approach, presented in [12], and the NS approach, presented here,
are shown in Figure 2. Figure 2 shows the velocity in the x-direction along the center of the cavity
as y increases from the bottom to the top. Notice that the results are identical for both methods.

Figure 3 compares the computational time required by the NR and NS approaches as the number
of processors increases. Notice that for 32 processors, the computational costs are reduced by
over 40%. Since the computational advantages of the Schur complement implementation are based
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Figure 1. Body force-driven cavity: problem statement and boundary conditions
(left) computational mesh (right).
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Figure 2. Body force-driven cavity: velocity in the x-direction along the centerline of the cavity for the
Newton–Schur (NS) and Newton–Raphson (NR) solution approaches.

largely on parallel features, the benefits of the NS approach grow as the number of processors
increases.

6.2. Three-dimensional lid-driven cavity

The geometry and boundary conditions for the three-dimensional lid-driven cavity are shown in
Figure 4. The computational mesh consists of 633 832 tetrahedral elements with a total of 113 793
nodes. A unit velocity is prescribed in the positive x-direction across the top of a cube of unit
volume. The viscosity is adjusted to obtain higher Reynolds numbers. Steady solutions to the three-
dimensional lid-driven cavity have only been shown to exist for Reynolds number less than 2000.
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Figure 3. Body force-driven cavity: computational time in seconds comparing the Newton–Schur (NS)
and Newton–Raphson (NR) solution approaches for a given number of processors and a fixed problem

size of 200 000 degrees of freedom.
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Figure 4. Three-dimensional lid-driven cavity: problem description and boundary conditions.
All boundaries are given no-slip wall conditions (vx =vy =vz =0) except for the top boundary,
which is given a unit velocity in the x-direction and zero velocity in y and z. The pressure at

one node at the center of the domain is prescribed as zero.

Experimental studies of the three-dimensional lid-driven cavity show a number of unsteady motions
for Re>2000, for example eddies and Görtler vortices [27].

Figure 5 shows the velocity in the x-direction along the centerline of the cavity along the height
of the cavity for Reynolds number 100, 400, 800, and 1000. Notice that the results correspond well
with those reported in [5]. Using the NS solution approach we were able to obtain steady-state
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Figure 5. Three-dimensional lid-driven cavity: velocity in the x-direction as measured along the center of
the cavity in the z-direction (x=0, y=0, z) compared with the results obtained in [5].

solutions up to Re=865. Above Re=865, the NS solution approach diverges. In [5] steady-state
solutions are obtained for Re=1000 using a velocity–pressure–vorticity formulation and a time-
marching scheme. To our knowledge, this paper presents the first results for high Reynolds flows
for the lid-driven cavity without the use of a time-marching scheme. As the Reynolds number
increases, the instabilities created by boundary layer flow over concave surfaces, like the corners of
the cavity, begin to take effect. These instabilities represent the transition into turbulent flow [28].
The failure to converge above Re=800 for the NS solution strategy could be due to the presence
of Taylor–Görtler vortices as reported in [5].

Taylor–Görtler vortices occur when the velocity profile approaches zero at the boundary over
a concave (and in some cases convex) surface. They are the result of a centrifugal instability.
Rayleigh first recognized this instability in 1916 and showed that as the distance increases radially
from the center point of a curved surface, the velocity must also increase, otherwise an inviscid
axisymmetric instability occurs. In the case of the corners of the three-dimensional cavity, the flow
decreases due to friction with the walls causing a decrease in velocity with radial distance.

Figure 6 shows the results of the three-dimensional lid-driven cavity problem for Re=800,
which were obtained by direct solution of the steady-state Navier–Stokes equations using the NS
solution approach. Notice the presence of the Taylor–Görtler vortices shown in the bottom corners
of the z-y profile. The presence of these vortices at Re=800 may suggest that the transition to
turbulent flow may be occurring well before Re=2000. Notice the similarity between the results
presented in Figure 6 and those reported for Re=1000 in [5], which also suggests that unstable
flow may be occurring at a lower Reynolds number than previously reported.

6.3. Three-dimensional jet flow from an orifice

The three-dimensional jet flow from an orifice problem represents the laminar evolution of vortices
formed by flow through a small hole in an infinite no-slip wall. The problem description and
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Figure 6. Three-dimensional lid-driven cavity: numerical results. The left column shows vector plots of the
velocity, the middle column shows the velocity magnitude, and the right column shows pressure contours

in the x–y plane (top row), x–z plane (middle row), and y–z plane (bottom row).

boundary conditions are shown in Figure 7. As the flow is injected into the domain, a mushroom
like vortex forms that grows in time. The viscosity was given as 0.001, which corresponds with
a Reynolds number of 1000. A time step of 0.01 was also used, which is typical for similar
problems.

Figure 8 shows the pressure contours at time t=1.0s. A section of the contours have been
removed in order to view the inside of the vortex. Figure 10 shows the velocity magnitude contours
and the streamtraces for the three-dimensional jet problem. Notice that the streamtraces are similar
to those from the two-dimensional analysis found in [3, 12]. Notice that the pressure contours
are moving forward and spreading out. A large region of high pressure forms in front of the
spreading region of low pressure. The low pressure region corresponds with the vortex shown in
the streamtraces of Figure 10. The pressure contours in the x–z plane of the domain are shown
in Figure 9.
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Figure 7. Three-dimensional jet problem: problem description and boundary conditions. All boundaries
are given traction-free conditions (r=0) except for the no-slip wall in which the orifice lies. The velocity
is prescribed as zero in all directions on the no-slip wall. Over the orifice a parabolic velocity is prescribed
in the x-direction with maximum magnitude of 1.0 and zero along the edges of the orifice. The velocities

in y and z over the orifice are zero.

Figure 8. Three-dimensional jet problem: pressure contours with a slice removed to show detail at time
t=1.0s. The pressure contours are moving forward and spreading sideways. Also note the large region

of high pressure that forms in front of a spreading region of low pressure.
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Figure 9. Three-dimensional jet problem: pressure contours in the x–z plane at time t=1.0s.

Figure 10. Three-dimensional jet problem: velocity magnitude contours and streamtraces at time t=1.0s.
The mushroom-shaped vortex formed by the jet at the orifice is clearly shown by the streamtraces.
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Figure 11. Three-dimensional jet problem: a comparison between two-dimensional
and three-dimensional results.

In Figure 11 we show a comparison between the two-dimensional results found in [12] and the
three-dimensional results presented herein. Notice that for both pressure and velocity, the results
do not match closely suggesting that three-dimensional effects are present for the jet flow problem.

6.4. Parallel speedup and isoefficiency

To explore the parallel features of the NS solution approach, a parallel performance study was
performed. The lid-driven cavity problem was solved using a variety of mesh sizes and number
of processors. The boundary conditions for the three-dimensional lid-driven cavity are shown in
Figure 4. The sizes of each mesh are listed in Table I. The largest mesh consists of over one
million DOF. The problem was solved for each mesh size on up to 128 processors.
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Table I. Mesh sizes in degrees of freedom (DOF) for parallel results.

Mesh Coarse DOF Fine DOF Total DOF

A 34591 167289 201880
B 61697 296496 358193
C 95803 457476 553279
D 135571 644676 780247
E 224243 1061157 1285400
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Figure 12. Parallel speedup for various mesh sizes. For the number of degrees of
freedom in each mesh, see Table I.

The parallel speedup for each mesh is shown in Figure 12. We measure the speedup as the
ratio of the parallel execution time over the serial execution time. Notice that for Meshes D and
E superlinear speedup is obtained, while for Meshes A, B, and C, the speedup is less than linear.
These results correspond with the expected performance as the problem size increases. For a larger
problem size, the ratio of computation time to communication time becomes smaller, allowing
for more efficient computation. For a fixed problem size, no algorithm is scalable in the sense
that eventually the communication costs will far exceed the computation cost as the number of
processors increases. In order to better gage the parallel features of the NS solution approach, an
isoefficiency study was performed. Isoefficiency contours characterize the problem size required
for a given number of processors to achieve a particular value of efficiency. By efficiency, we are
referring to the ratio of the serial costs over the parallel costs. For a given serial computation time,
T1, and parallel time, Tp, for p processors, the efficiency, E , is given as

Ep= T1
pTp

(32)
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Figure 13 shows the isoefficiency contours for each of the meshes in Table I. An algorithm that
is poorly scalable will have almost vertical isoefficiency contours, which correspond to a much
greater problem size required to obtain a particular efficiency for a given number of processors [29].
Notice that for greater than 32 processors, the isoefficiency contours are almost horizontal, which
suggests that to sustain a certain amount of efficiency, a greater number of processors does not
require a substantially larger problem size. The isoefficiency contours in Figure 13 reveal that the
NS solution approach is very scalable. Good parallel performance is obtained for a reasonable
problem size.

The parallel performance data is summarized in Table II. Values for the theoretical speedup
were obtained using Amdahl’s law, which estimates the speedup based on the serial fraction of the
computation. The speedup cannot exceed the inverse of the serial fraction. For meshes D and E,
Amdahl’s law is not appropriate because the efficiency is greater than 100%. This may be due to the
fact that for such a large problem size, the data does not fit in the cache memory on one processor
leading to an extremely long serial computation time. Once the problem has been partitioned over
several processors, the data fit into the cache, which results in an efficiency greater than 100%.
The superlinear speedup obtained for Meshes D and E is also explained by this circumstance.
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Figure 13. Isoefficiency contours for the Newton–Schur solution approach.

Table II. Summary of parallel results.

Max. efficiency Theoretical Speedup
Mesh obtained (%) speedup obtained

A 86 27 22
B 86 42 38
C 92 146 75
D 122 — 175
E 135 — 103
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It is important to note that the number of unknowns is greatly increased by the addition of
the fine scale variables. For example, for the lid-driven cavity problem, the total number of DOF
for the most refined mesh is 1 285 400, whereas the number of coarse-scale DOF is 224 243,
which makes up only 21% of the total. By using the Schur complement implementation, the initial
problem size is reduced by roughly 80%. The scalability of the algorithm helps to offset the extra
computational cost produced by the dual scales. Although the problem size is much greater, the
parallel performance improves as the problem size grows. Also, the fine-scale problem may be
further partitioned due to the uncoupled nature of the fine-scale terms.

Remark 2
This example also illustrates the increased cost associated with using the variational multiscale
framework. The computational cost associated with the variational multiscale framework is approx-
imately four times the cost of solving the coarse-scale problem alone.

7. CONCLUSIONS

In summary, we have investigated the performance of a Schur complement implementation of
a consistent linearization of the incompressible Navier–Stokes equations for a variety of three-
dimensional problems. We obtained high Reynolds solutions to the lid-driven cavity problem
without the use of a time-marching scheme. The results obtained for Re=800 suggest that insta-
bilities in the flow, which represent the onset of the transition to turbulent flow, may occur at
Reynolds numbers less than 1000. We also showed that three-dimensional effects may be present
for the jet flow through an orifice problem. The results reveal a number of interesting features
of the variational multiscale framework. For example, for large problems the dual scales intro-
duce a significant amount of additional DOF. For the lid-driven cavity problem, the fine-scale
variable comprised over 80% of the total DOF. Regarding the parallel performance of the NS
solution approach, we were able to achieve superlinear speedup for meshes with greater than one
million DOF. By means of an isoefficiency study, we also showed that the NS solution algorithm
is scalable for reasonable problem sizes.
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